a new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics
Authors
abstract
in this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (fpdes) in the sense of modified riemann-liouville derivative. with the aid of symbolic computation, we choose the space-time fractional zakharov-kuznetsov-benjamin-bona-mahony (zkbbm) equation in mathematical physics with a source to illustrate the validity and advantages of the novel method. as a result, some new exact solutions including solitary wave solutions and periodic wave solutions are successfully obtained. the proposed approach can also be applied to other nonlinear fpdes arising in mathematical physics.
similar resources
A new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics
In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...
full textSolving nonlinear space-time fractional differential equations via ansatz method
In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...
full textA New Technique of Reduce Differential Transform Method to Solve Local Fractional PDEs in Mathematical Physics
In this manuscript, we investigate solutions of the partial differential equations (PDEs) arising inmathematical physics with local fractional derivative operators (LFDOs). To get approximate solutionsof these equations, we utilize the reduce differential transform method (RDTM) which is basedupon the LFDOs. Illustrative examples are given to show the accuracy and reliable results. Theobtained ...
full textThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
full textAn approximate method for solving fractional system differential equations
IIn this research work, we have shown that it is possible to use fuzzy transform method (FTM) for the estimate solution of fractional system differential equations (FSDEs). In numerical methods, in order to estimate a function on a particular interval, only a restricted number of points are employed. However, what makes the F-transform preferable to other methods is that it makes use of all poi...
full textLegendre Wavelets for Solving Fractional Differential Equations
In this paper, we develop a framework to obtain approximate numerical solutions to ordinary differential equations (ODEs) involving fractional order derivatives using Legendre wavelets approximations. The continues Legendre wavelets constructed on [0, 1] are utilized as a basis in collocation method. Illustrative examples are included to demonstrate the validity and applicability of the techn...
full textMy Resources
Save resource for easier access later
Journal title:
computational methods for differential equationsجلد ۲، شماره ۳، صفحات ۱۵۳-۱۷۰
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023